Gå til Areal eller Volum.

Et prisme er et solid objekt med:

  • identiske ender
  • flatskjerm ansikter
  • og samme tverrsnitt langs dens lengde !

Et tverrsnitt er formen laget ved å kutte rett over et objekt.

tverrsnitt av dette objektet er en trekant …

.. den har samme tverrsnitt langs dens lengde …

… så det er en trekantet prisme.,

Prøve å tegne en figur på et stykke
papir (ved hjelp av rette linjer)

Så tenk det strekker seg opp fra arket …
… det er et prisme !

Ingen Kurver!

Et prisme er en polyhedron, noe som betyr at alle ansikter er flate!

Ingen buede sider.

For eksempel, en sylinder er ikke et prisme, fordi det har buede kanter.,

Baser


endene av et prisme er parallell
og hver og en er kalt en base.

Sider


Den siden som vender mot av et prisme er parallelograms
(4-kantede figurer med motstående sider parallelle)

Dette er alle Prismer:

og mer!

Eksempel: Dette sekskantet iskrystall.

Det ser ut som en sekskant, men fordi det har en viss tykkelse, for det er faktisk en sekskantet prisme!

Foto: NASA / Alexey Kljatov.,

Vanlig vs Uregelmessig Prismer

Alle de tidligere eksemplene er Vanlig Prismer, fordi tverrsnittet er vanlig (med andre ord er det en figur med like kanten lengder, og like vinkler.,)

Here is an example of an Irregular Prism:

Irregular Pentagonal Prism:
Cross-Section
It is «irregular» because the
cross-section is not «regular» in shape.,div>

Areal = 2 × Base-Området
+ Base Omkretsen × Lengde

Eksempel: Hva er arealet av et prisme der basen området er 25 m2, basen omkretsen er 24 m, og lengden er 12 m:

Areal = 2 × Base-Området + Base Omkretsen × Lengde
= 2 × 25 m2 + 24 m x 12 m
= 50 m2 + 288 m2
= 338 m2

(Merk: vi har et Område Beregning Verktøy)

Volumet av et Prisme

Volumet av et prisme er et område i den ene enden ganger lengden av prismet.,

Volum = Base-Området × Lengde

Eksempel: Hva er volumet av et prisme der basen området er 25 m2 og som er 12 meter lang:

Volum = Areal × Lengde
= 25 m2 × 12 m
= 300 m3

Leke med det her., Formelen fungerer også når det «lener seg over» (skrå) men husk at høyden er i rett vinkel til base:

Og dette er grunnen:


stabel kan lene seg over, men fortsatt har den samme volum

Legg igjen en kommentar

Din e-postadresse vil ikke bli publisert. Obligatoriske felt er merket med *

© 2021 Tombouctou

Tema av Anders NorénOpp ↑