menüpont helye: Analysis_Survival_Cox regresszió.
Ez a funkció egy vagy több prediktor esetében megfelel a Cox arányos veszélyességi modelljének a túlélési idő (idő-esemény) kimenetele szempontjából.
A Cox regresszió (vagy arányos veszély regresszió) több változó hatásának vizsgálatára szolgáló módszer, amikor egy meghatározott esemény megtörténik. Egy olyan eredmény összefüggésében, mint a halál, ezt Cox regressziónak nevezik a túlélési elemzéshez., A módszer nem feltételez semmilyen konkrét “túlélési modellt”, de nem igazán nemparametrikus, mert feltételezi, hogy a prediktor változók túlélésre gyakorolt hatásai az idő múlásával állandóak, és egy skálán adalékosak. Ne használja a Cox regressziót statisztikus irányítása nélkül.
feltéve, hogy teljesülnek A Cox regresszió feltételezései, ez a függvény jobb becslést ad a túlélési valószínűségekre és a kumulatív veszélyre, mint a Kaplan-Meier függvény.,
Hazard and hazard-ratio
kumulatív veszély egy időben t a 0 és a T idő közötti halálozás kockázata, és a T időpontban a túlélő függvény A T-ig való túlélés valószínűsége (Lásd még Kaplan-Meier becslések).
A Cox regresszió együtthatói a veszélyre vonatkoznak; a pozitív együttható rosszabb prognózist jelez, a negatív együttható pedig annak a változónak a védőhatását jelzi, amelyhez kapcsolódik.,
a prediktor változóhoz kapcsolódó veszélyességi arányt az együttható kitevője adja meg; ezt a StatsDirect “együttható részletei” opció alatt egy konfidenciaintervallummal adjuk meg. A veszélyek aránya a relatív halálozási aránynak is tekinthető, lásd Armitage and Berry (1994). A veszélyek arányának értelmezése a kérdéses prediktor változó mérési skálájától függ, lásd Sahai and Kurshid (1996) a relatív veszélykockázatra vonatkozó további információkat.,
időfüggő és rögzített kovariánsok
prospektív vizsgálatokban, amikor az egyéneket idővel követik, a kovariánsok értéke idővel változhat. A kovariánsokat tehát fix és időfüggő részre lehet osztani. A kovariáns időfüggő, ha a két különböző alany értékei közötti különbség idővel változik; például a szérum koleszterin. A kovariáns akkor van rögzítve, ha értékei nem változnak idővel, például nem vagy faj. Az életmódbeli tényezők és a fiziológiai mérések, például a vérnyomás általában időfüggőek., Az olyan halmozott kitettségek, mint a dohányzás, szintén időfüggőek, de gyakran pontatlan dichotómiába kényszerülnek, azaz “kitett” vs. “nem kitett” az értelmesebb “expozíciós idő”helyett. Az időfüggő kovariánsok kezelésére nincsenek szigorú és gyors szabályok. Ha a Cox regresszió alkalmazását fontolgatja, kérjen statisztikus segítségét, lehetőleg a vizsgálat tervezési szakaszában.
Modellanalízis és deviancia
a modell általános statisztikai jelentőségének vizsgálata a “modellanalízis” opció alatt történik., Itt a chi-négyzet statisztika valószínűségét úgy számítjuk ki, hogy összehasonlítjuk a modell devianciáját (- 2 * log valószínűség), az összes megadott kovariánssal, a modellhez képest, az összes kovariátummal. A kovariánsoknak a modellhez való egyedi hozzájárulását a fő kimenet minden egyes együtthatójával megadott szignifikancia teszt alapján lehet értékelni; ez meglehetősen nagy mintaméretet feltételez.
deviancia mínusz kétszerese a maximális valószínűséggel felszerelt modellek valószínűségi arányának (Hosmer and Lemeshow, 1989 és 1999; Cox and Snell, 1989; Pregibon, 1981)., A paraméter hozzáadásának értékét a Cox modellhez úgy teszteljük, hogy kivonjuk a modell devianciáját az új paraméterrel a modell devianciájából az új paraméter nélkül, a különbséget ezután egy chi-négyzet eloszlással teszteljük, amelynek szabadságfoka megegyezik a régi és az új modellek szabadságfoka közötti különbséggel. A modellanalízis opció egy olyan modellhez teszteli a megadott modellt, amelynek csak egy paramétere van, az intercept; ez teszteli a modellben megadott prediktorok/kovariánsok kombinált értékét.,
egyes statisztikai csomagok fokozatos Cox regressziót kínálnak, amely szisztematikus teszteket végez a prediktorok/kovariánsok különböző kombinációira. Az ilyen automatikus modellépítési eljárások félrevezetőek lehetnek, mivel nem veszik figyelembe az egyes prediktorok valós fontosságát, ezért a StatsDirect nem tartalmazza a lépésenkénti kiválasztást.
Túlélési és kumulatív relatív hazárd
a túlélési/túlélési függvényt és a kumulatív veszélyfunkciót (a Kaplan-Meier szerint) a kiindulási értékhez (a kovariánsok legalacsonyabb értékéhez) viszonyítva kell kiszámítani minden egyes időpontban., A Cox regresszió jobban becsüli ezeket a funkciókat, mint a Kaplan-Meier módszer, amikor a Cox modell feltételezései teljesülnek, és a modell illeszkedése erős.
adott a lehetőség, hogy ‘központ folyamatos covariates’ – ez a túlélés, a figyelmeztető funkciók relatív, hogy a folyamatos változók helyett a relatív, hogy a minimális, ami általában a legtöbb érdemi összehasonlítás.
ha bináris / dichotóm prediktorai vannak a modellben, akkor lehetősége van arra, hogy minden változóra külön kiszámítsa a túlélést és a kumulatív veszélyeket.,
adatelőkészítés
- eseménytől-időpontig, pl. amikor egy vizsgált személy életben maradt.
- Event/censor code-ennek ≥1(esemény (ek) nek kell lennie) vagy 0 (nincs esemény a vizsgálat végén, azaz “jobb cenzúrázott”).
- rétegek – pl. többközpontú vizsgálat középkódja. Legyen óvatos a választott rétegek; Kérjen tanácsot egy statisztikus.
- prediktorok-ezeket kovariátumoknak is nevezik, amelyek számos olyan változó lehetnek, amelyekről úgy gondolják, hogy kapcsolódnak a vizsgált eseményhez. Ha egy prediktor egy osztályozó változó több mint két osztály (azaz., ordinális vagy névleges) akkor először a dummy változó függvényt kell használnia, hogy bináris osztályok sorozatává alakítsa.
MŰSZAKI érvényesítés
StatsDirect optimalizálja a Cox regressziós modellhez társított naplófájl valószínűségét, amíg az iterációkkal történő naplófolyamat-változás kisebb, mint a számítás előtt közvetlenül megjelenő párbeszédpanelen megadott pontosság (Lawless, 1982; Kalbfleisch and Prentice, 1980; Harris, 1991; Cox and Oakes, 1984; Le, 1997; Hosmer and Lemeshow, 1999).,
a számítási lehetőségek párbeszédpanel érték (alapértelmezett érték 10000) a “felosztási arány”; ez az arányosság állandó egy időben t amely felett StatsDirect osztja az adatokat több rétegre és kiszámítja a kiterjesztett valószínűségi megoldás, lásd Bryson and Johnson, (1981).
a kapcsolatokat Breslow közelítése kezeli (Breslow, 1974).
Cox-Snell maradványok kiszámítása A Cox and Oakes (1984) által meghatározott módon történik. Cox-Snell, Martingale és deviance residuals számítása Collett (1994) szerint történik.,
a kiindulási túlélés és a kumulatív veszélyességi arány minden egyes alkalommal kiszámításra kerül. Maximális valószínűségi módszereket alkalmaznak, amelyek iteratívak, ha egynél több halál/esemény van egy megfigyelt időben (Kalbfleisch and Prentice, 1973). Más szoftverek a kevésbé pontos Breslow becsléseket használhatják ezekre a funkciókra.
Example
From Armitage and Berry (1994, p. 479).
teszt munkafüzet (túlélési munkalap: színpadi csoport, idő, cenzor).
az alábbi adatok a diffúz histiocytás lymphomában szenvedő betegek vizsgálatába való belépés óta eltelt napok túlélését jelzik., A betegek két különböző csoportját, a III. stádiumú és a IV. stádiumú betegeket hasonlítják össze.,2ee13″>0
Alternatively, open the test workbook using the file open function of the file menu., Ezután válassza ki a Cox regressziót az elemzés menü túlélési elemzés szakaszában. Válassza ki az “idő” feliratú oszlopot, amikor az időpontokat kéri, válassza a “cenzor” lehetőséget, amikor halál/ cenzúra kér, kattintson a Mégse gombra, amikor a rétegekről kérdezik, majd a prediktorokról kérdezik, majd válassza a “Színpadcsoport”feliratú oszlopot.
ebben a példában:
Cox (arányos veszélyek) regresszió
80 alanyok 54 események
Deviance (valószínűségi Arány) chi-square = 7,634383 df = 1 P = 0,0057
B1 Színpadcsoport = 0,96102 z = 2,492043 p = 0.,0127
Cox regression – hazard ratios
Parameter | Hazard ratio | 95% CI |
Stage group | 2.614362 | 1.227756 to 5.566976 |
Parameter | Coefficient | Standard Error |
Stage group | 0.96102 | 0.,385636 |
Cox regresszió – modell analízis
log valószínűség nincs kovariáns = -207.554801
Log valószínűség minden modell kovariáns = -203.737609
Deviance (valószínűségi Arány) chi-square = 7.634383 df = 1 p = 0,0057
A B1 együttható szignifikancia tesztje azt a null hipotézist teszteli, hogy nulla, így exponense egyenlő., Az exp(b1) konfidencia-intervalluma tehát a relatív halálozási arány vagy a relatív hazárd konfidencia-intervalluma; ezért 95% – os bizalommal következtethetünk arra, hogy a 4.stádiumú rákok halálozási aránya körülbelül 3-szor, és legalább 1,2-szerese a 3. stádiumú rákok kockázatának.
Vélemény, hozzászólás?